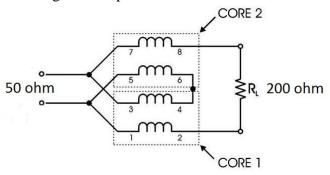
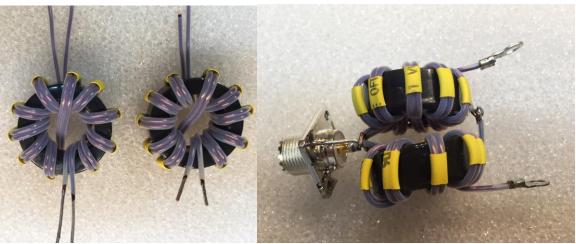
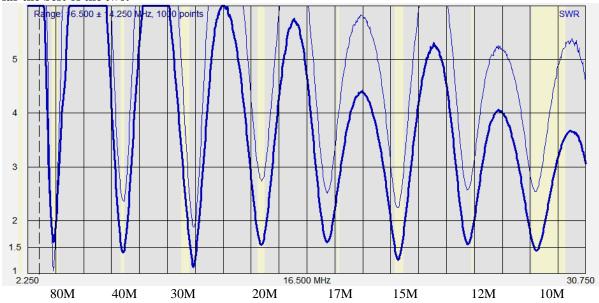

Experimenting with different Baluns on a 275' Horizontal Multi-Band Loop Antenna 80/40/30/20/17/15/12/10/6m Everett Sharp N8CNP everettsharp@aol.com 6/07/15


I recently installed a 275' loop antenna that has an average height of above the ground of about 30' and is feed it in one corner. The original plan was to use a Balun Designs 2.5:1 (125/50 ohms) balun, however, as it turned out, a 4:1 Dual-Core Guanella balun worked out to be the best option for my loop.

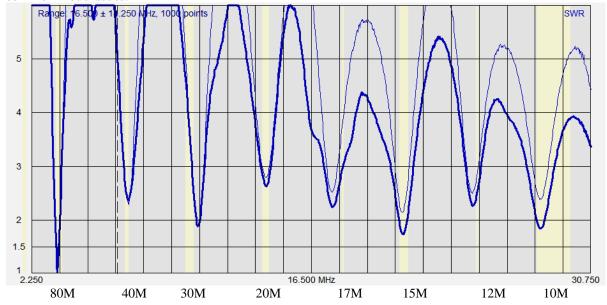

The light blue line is the sweep with the Balun Design's 2.5:1 balun, the Dark Blue line is the sweep with a DIY 4:1 Dual-Core Guanella balun. All of these sweeps in the graph below were taken in the ham shack.

The 4:1 Dual-Core Guanella, current balun (200/50 ohms) was a DIY project, as shown in the diagram and pictures below:

Each of the FT140-61 cores are wound with 10 bifilar turns of #16 maganet wire and are covered with 1.68mm ID Teflon tubing that was purchased on eBay. I used heat shrink tubing to hold the wire pairs together.

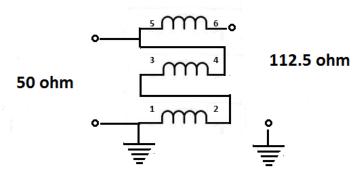


The finished balun is inclosed inside a 2" PVC pipe cap and a 2" plug for the bottom.

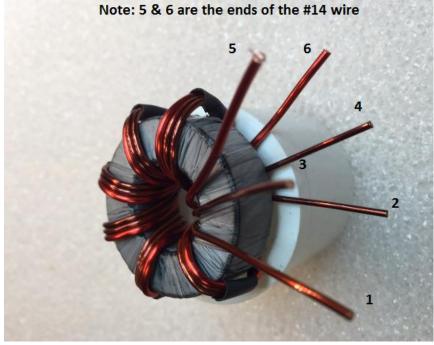


I wanted to eliminate any of the variables that could cause distortions, that might exist in the feed line to my shack. So for this group of experiments I used a 50' length of RG8X from the balun to the RigExpert-AA170 to evaluate the different balun configurations in this experiment.

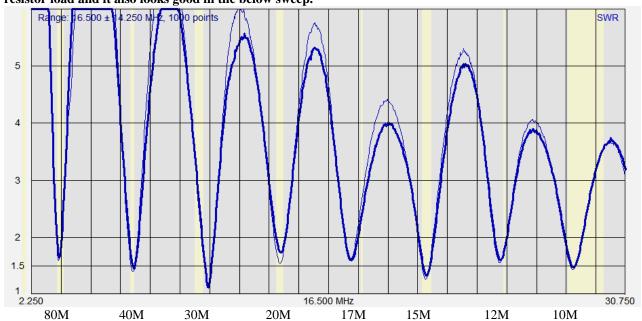
The dark blue line is a 4:1 Dual-Core Guanella, balun and the light blue line is a Balun Design's 2.5:1 balun, both with 50' of RG8X coax. **As can be seen the 4:1 Dual-Core Guanella, Current balun was by far the best of the two.**

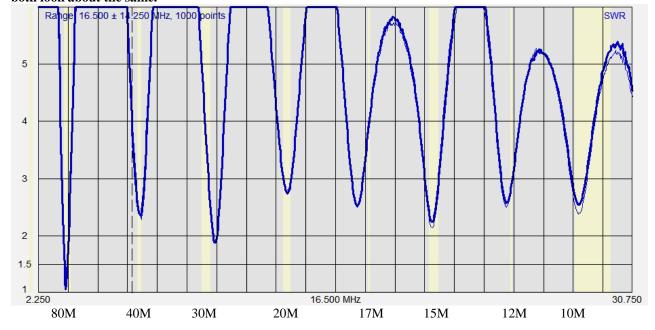


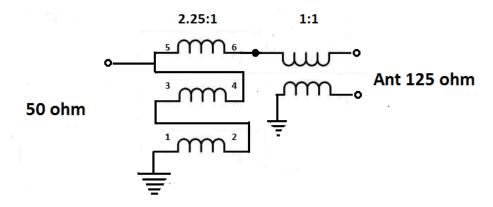
The dark blue line is with a DIY Sevick UNUN 2.25:1 balun, light blue line is with the Balun Design's 2.5:1 balun, with 50' RG8X of coax. The simple 2.25:1 UNUN balun looks better than the more complex Balun Design's 2.5:1balun. The only thing that I don't know is if it could cause some common mode issues.



Below is the Sevick design 2.25:1 UNUN Balun that was used in the prior sweep. This was made by winding 7 trifilar turns on a FT150A-K core. Two of the wires are #16 and the wire at 5 and 6 is a #14 magnet wire. I covered the core with Teflon plumbers tape.


2.25:1 UNUN Balun




The dark blue line is a 4:1 balun using two FT150-61 cores, with each having 10 bifular turns, the light blue line is two FT140-61 cores, with each wound with 10 bifular turns, with 50' of RG8X coax. The FT150-61 cores were purchased from BuxComm, I am not sure that they are 61 material, as advertised, because the inductance was 500 uH, with 10 turns and the balun that was wound with FT140-61 had a inductance of 17 uH, with 10 turns. **However, the balun looked very good sweeping it with a 200 ohm resistor load and it also looks good in the below sweep.**

The dark blue line is a Balun designs 2.5:1 and light blue is a DIY copy of the Balun Design's balun. **They both look about the same.**

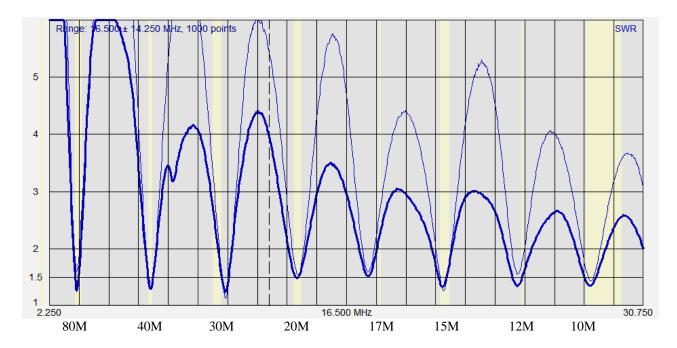
By doing some experimenting it looks liked the Balun Design's 2.5:1 balun uses a FT150A-K core wound with 7 trifilar turns, two of which are #16 and one with #14 magnet wire. **It is a copy of the Sevick 2.25:1 UNUN design**. It has another core which is a FT240-K (52) and it has 10 bifular turns of #14 magnet wire, with a Teflon tube covering. It is a 1:1 current balun, which is connected between the antenna terminals and the 2.25:1 UNUN balun. I made a diagram of it below.

Balun Design's calls this a 2.5:1 balun, but after sweeping it looks more like it is 2.25:1.

Balun Design's 2.5:1

DIY copy 2.5:1 Balun

SWR		SWR	
125 ohm	112 ohm	125 ohm	112 ohm
1.1	1.0	1.1	1.0
1.1	1.0	1.1	1.0
1.2	1.1	1.2	1.1
1.2	1.2	1.3	1.2
1.6	1.5	1.6	1.4
	125 ohm 1.1 1.1 1.2 1.2	125 ohm 112 ohm 1.1 1.0 1.1 1.0 1.2 1.1 1.2 1.2	125 ohm 112 ohm 1.1 1.0 1.1 1.1 1.2 1.1 1.2 1.2 1.3


This is the DIY 2.5:1 balun, both use a 1/4" thick plastic spacer between the two cores.

Below is the Balun Design's 2.5:1 Balun

The dark blue line is a sweep in the ham shack and the light blue is a sweep with 50' RG8X coax, with both using the same 4:1 DIY Dual-Core Guanella balun. The longer run to the shack with a earth ground, before it enters the house and a common mode choke between the earth ground and the ham shack flattens out the high lobes, but there is little change in the resonate points, or the SWR.

I don't know why the 4:1 balun worked out better than the 2.5:1 balun on my loop. I am feeding the loop in a corner, which should be 100 ohms, more, or less. On another insulation the results might be quite different.

A few week s ago we set up a 40 meter vertical Delta loop and the 2.5:1 balun was, by far, better than the DIY 4:1 balun for that loop. So my advice is try both types of baluns with your loop antenna, you might be surprised.

I will have to investigate the 2.25:1 UNUN Sevick design balun and will try it out on Field Day when we again will set up the 40 meter Delta loop. The Sevick 2.25:1 balun looks good on all sweeps and the SWR is just about flat up through 55 MHz, when using a 112 ohm load resistor.